Molecular Dynamics Simulations
xtb is also capable of performing molecular dynamics (MD) simulations.
An MD simulation with pre-optimization can be initiated with:
xtb struc.xyz --omd
--md
flag, but the input structure should be reasonable. Otherwise, the MD simulation may become unstable.To have more detailed control over the MD simulation, you can provide an xtb input file. The following example shows the default settings, which can be adjusted as needed.
$md
temp=298.15 # temperature in K
time= 50.0 # Total time of MD in ps
dump= 50.0 # Interval of saving a structure in fs
step= 4.0 # Single time step in fs
velo=false # Don't print out velocities
nvt =true # Retain NVT ensemble
hmass=4 # Mass of H atoms
shake=2 # Apply shake algorithm to all bonds
sccacc=2.0 # Accuracy of SCC iterations
$end
Further keywords and explanations can be found in the documentation.
Exercise 1
Try running an MD simulation using GFN-FF with the ALPB(water) solvation model and default settings.
90
C -5.3127996594 -2.4157946011 -0.5090291244
C -6.6369198591 -2.2744765141 -0.3505867691
C -4.5376337067 -1.9989947690 -1.6511538708
C -7.4911082799 -1.4906802100 -1.3353795445
C -7.3417027536 -2.8130153570 0.8534300295
C -6.9820968905 -0.0260037238 -1.4231824713
C -3.2303223550 -1.6498120479 -1.6254976982
C -2.4648530707 -1.4782784301 -0.4345685359
C -1.1490119425 -1.1466912716 -0.3267799699
C -0.2345729980 -0.9625082034 -1.4997955626
C -0.6049768456 -0.9722141905 0.9890332154
C 0.6701604636 -0.6330961686 1.2870390935
C 1.1341096011 -0.4761647542 2.6269132552
C 2.3830259753 -0.1235992724 3.0110310022
C 3.4734843635 0.1679005598 2.1268262297
C 4.6931387856 0.5393278145 2.5267510375
C 5.8304304131 0.8677548326 1.6003866159
N 5.4283570547 0.8855111783 0.2104033711
C 5.3166273681 -0.1533114661 -0.6067536733
C 6.0134079054 -1.4661798013 -0.2726105716
O 4.7074640990 -0.0705419639 -1.6861449989
C 7.5144666461 -1.3152943375 -0.5941160582
O 5.4313708211 -2.5035661443 -1.0272412069
C -6.7935147347 0.4641208344 -0.0003944175
O -7.7403733383 0.5228053447 0.7742620645
N -5.5106869286 0.7636403711 0.3110847277
C -4.9463300150 1.1535464336 1.5274406520
C -3.6739854047 1.6059179412 1.5754484283
C -5.7878061510 1.0225637475 2.7522984886
C -2.7844664843 1.8243840709 0.4767015254
C -1.5364316121 2.3145689941 0.6208013650
C -0.6655220004 2.5888732490 -0.4843830298
C 0.5487325406 3.1343609346 -0.3631391694
C 8.3298335983 -2.5431938358 -0.1704211284
C 9.6891088069 -2.5276652589 -0.8678074623
C 8.5197655075 -2.5906603796 1.3443209467
O -8.8586444577 -1.4991160896 -1.0023350180
C 1.4399210852 3.4740558350 -1.5251049648
C 2.6756050844 2.6104389356 -1.3716483915
C 1.8111558123 4.9585806785 -1.5160495647
O 2.6206023923 1.5056225590 -2.0814961045
O 3.6041031244 2.8850885925 -0.6340527724
H -4.7625204190 -2.9056795986 0.2836333196
H -5.0509303359 -2.0042601899 -2.6049219243
H -7.4349047919 -1.9513459821 -2.3302603369
H -6.6760991929 -3.4329009729 1.4477280383
H -8.2048607459 -3.4019112683 0.5445011777
H -7.7116749441 -1.9955343308 1.4750390520
H -6.0619084015 0.0254594956 -1.9985287387
H -7.7560134130 0.5683074568 -1.9132455671
H -2.7489218428 -1.4394091975 -2.5706796840
H -3.0129717265 -1.5960544885 0.4909743144
H -0.7561184183 -1.0725573851 -2.4442035526
H 0.5638309381 -1.7039098370 -1.4666980415
H 0.2258577807 0.0242190429 -1.4708519245
H -1.2956296326 -1.1246557687 1.8098949728
H 1.3745898015 -0.4696821456 0.4862918222
H 0.3981454779 -0.6600516684 3.4004310551
H 2.5974468939 -0.0405121044 4.0685973172
H 3.2726215465 0.0815655312 1.0682418239
H 4.9262739703 0.6324234323 3.5775689496
H 6.6468639108 0.1562857796 1.7478921113
H 6.2119507967 1.8653636049 1.8407595221
H 4.8859889259 1.7105149385 -0.0683642472
H 5.8575220450 -1.7269366655 0.7774134480
H 7.6007536957 -1.1797242272 -1.6752148153
H 7.9082834268 -0.4205120198 -0.1104506371
H 5.0955504465 -2.0978322698 -1.8442489323
H -4.8389468734 0.6790182836 -0.4409166158
H -3.2785159256 1.8587339956 2.5484209564
H -5.2246095910 1.3178627663 3.6320617997
H -6.1254267820 -0.0065165747 2.8692478768
H -6.6790660370 1.6429351108 2.6701403518
H -3.1292138183 1.6120944762 -0.5273979730
H -1.1579767117 2.5402684410 1.6084450304
H -1.0491040613 2.3573854617 -1.4703055793
H 0.9505481083 3.3742128511 0.6120025660
H 7.7785462919 -3.4349097892 -0.4874864977
H 9.5694109024 -2.5429149313 -1.9488155636
H 10.2730806739 -3.3975457026 -0.5768929878
H 10.2450015890 -1.6328073712 -0.5947376585
H 9.0991604017 -3.4685164813 1.6200641190
H 7.5644928769 -2.6459407744 1.8604244387
H 9.0545665098 -1.7068730142 1.6874964687
H -8.9584252351 -0.9401749581 -0.2142721535
H 0.9490038267 3.1991238510 -2.4619332618
H 2.4126870178 5.2036544364 -2.3883354398
H 2.3855713372 5.1906177538 -0.6223783473
H 0.9080079216 5.5625777336 -1.5263116425
H 3.4359643823 0.9211814126 -1.9665264904
Next, run another MD simulation with the same settings but adjust the time step to 2.0 fs by providing an input file. For time efficiency, reduce the MD length to 20 ps this time, but please be aware that this is by far not sufficient for production runs.
You can view the resulting trajectory by opening the xtb.trj
file with tools like Molden.
MTD simulations
With xtb, you can also apply additional potentials during MD simulations to drive the molecule over energy barriers and prevent sampling the same structure repeatedly. These types of simulations are known as Meta-Dynamics (MTD) simulations and can be very useful for exploring the potential energy surface (PES) of a molecule.
To activate MTD simulations, add the following block to your xtb input file:
$metadyn
save=10
kpush=1.0
alp=0.2
$end
Exercise 2
Perform a new MD simulation using the xtb input file you created earlier, but add a second block to activate the MTD simulation as shown above. Check the resulting trajectory and compare it to the normal MD simulation.
For more information on the technical aspects of MTD simulations, refer to the documentation. For the theoretical background, see the original publication.